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A B S T R A C T

Recent studies show that pre-stimulus band-specific power and phase in the electroencephalogram (EEG) can
predict accuracy on tasks involving the detection of near-threshold stimuli. However, results in the auditory
modality have been mixed, and few works have examined pre-stimulus features when more complex decisions
are made (e.g. identifying supra-threshold sounds). Further, most auditory studies have used background
sounds known to induce oscillatory EEG states, leaving it unclear whether phase predicts accuracy without
such background sounds. To address this gap in knowledge, the present study examined pre-stimulus EEG as it
relates to accuracy in a tone pattern identification task. On each trial, participants heard a triad of 40-ms
sinusoidal tones (separated by 40-ms intervals), one of which was at a different frequency than the other
two. Participants' task was to indicate the tone pattern (low-low-high, low-high-low, etc.). No background
sounds were employed. Using a phase opposition measure based on inter-trial phase consistencies, pre-
stimulus 7–10 Hz phase was found to differ between correct and incorrect trials ~200 to 100ms prior to
tone-pattern onset. After sorting trials into bins based on phase, accuracy was found to be lowest at around þ

�π
relative to individuals’ most accurate phase bin. No significant effects were found for pre-stimulus power. In
the context of the literature, findings suggest an important relationship between the complexity of task de-
mands and pre-stimulus activity within the auditory domain. Results also raise interesting questions about the
role of induced oscillatory states or rhythmic processing modes in obtaining pre-stimulus effects of phase in
auditory tasks.
1. Introduction

Increasingly, neurophysiological evidence suggests that ongoing
brain states, indexed by frequency band-specific EEG features, shape
perception and cognition (for review, see Buzs�aki, 2006; Jensen and
Mazaheri, 2010; VanRullen, 2016a). For example, suppressed
pre-stimulus alpha (~8–13Hz) power in the electroencephalogram has
been associated with enhanced detection of faint flashes of light (Busch
et al., 2009). That study also revealed that pre-stimulus EEG phase in the
high theta/alpha range (~6–12Hz) distinguished correct from incorrect
trials, with a decreasing trend in accuracy from the most accurate phase
to ~180� opposite. Similar reports have beenmade in other visual studies
where oscillatory activity predicts perceptions (Dugu�e et al., 2011;
Ergenoglu et al., 2004; Limbach and Corballis, 2016; Milton and
Pleydell-Pearce, 2016; Samaha et al., 2017).

Findings from auditory studies are notably mixed (for review, see
Zoefel and VanRullen, 2015). Some report less pre-stimulus alpha power
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on correct relative to incorrect trials (e.g., Leske et al., 2015; Strauβ et al.,
2015), while others report a relative increase in alpha power on correct
trials and power differences in other frequency bands (e.g., Bernasconi
et al., 2011; Hermann et al., 2016; Kayser et al., 2016). Ng et al. (2012)
found that missed detection of masked sounds was modulated by
pre-stimulus phase, suggesting an important role of phase in the inhibi-
tion of background sounds. Pre-stimulus phase effects for lexical decision
(Strauβ et al., 2015), tone discrimination (Kayser et al., 2016), and gap
detection (Henry et al., 2016) in non-rhythmic background sounds have
also been observed. Further, oscillations induced by rhythmic input (i.e.,
entrained oscillations) have repeatedly produced phase-dependent
auditory performances (Besle et al., 2011; Henry and Obleser, 2012;
Stefanics et al., 2010). For instance, Henry and Obleser (2012) entrained
delta oscillations with a tone modulated up and down in frequency at a
rate of 3 Hz. Participants’ task was to detect a short gap in the
frequency-modulated sound. Gap detection hit rates were modulated by
the phase of entrained oscillations. However, it has been demonstrated
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more than once that when near threshold tones are presented in silence,
pre-stimulus phase fails to predict performance (Zoefel and Heil, 2013;
VanRullen et al., 2014).

One possible reason for inconsistency is that the predictive capacity of
pre-stimulus power and phase are dependent upon listeners being forced
into a rhythmic processing mode (Henry and Obleser, 2012; Schroeder
and Lakatos, 2009). Indeed, most works have entrained oscillations of a
particular rate to measure how auditory perception is modulated by the
phase of the entrained rhythm (e.g., Hermann et al., 2016; Neuling et al.,
2012; Henry and Obleser, 2012; Stefanics et al., 2010); Zoefel et al.
(2018). Pre-stimulus phase effects on auditory perception can be ob-
tained without clear entrainment, but to date all studies demonstrating
this have employed background sounds of some nature (e.g., Henry et al.,
2016; Ng et al., 2012; Strauβ et al., 2015). The presence of masking
sounds often drives an increase in the power of oscillations even if those
oscillations do not have clear phase consistency across trials. This is
especially the case in the alpha range where many pre-stimulus phase
effects have been reported (for review, see Strauß et al., 2015). There is
evidence that the role of alpha phase is modulated by alpha power (for
review, see Jensen and Mazaheri, 2010; Mathewson et al., 2011; also, see
Hermann et al., 2016), and that alpha power is especially useful for in-
hibition during the presence of noise (Ng et al., 2012; Strauß et al., 2015).
Pre-stimulus EEG may only relate to perceptual performances when
background sounds are either driving oscillatory states through modu-
lations of power, phase, or both. That most auditory studies have used
background sounds may suggest that ongoing background stimulation
(and perhaps associated entrainment) is assumed to be necessary (see
Henry and Obleser, 2012; Peelle and Sommers, 2015; W€ostmann et al.,
2016; Zoefel et al., 2018).

An additional possibility is that the level of cortical involvement is a
critical factor (VanRullen et al., 2014). The visual and auditory systems
differ architecturally in that auditory stimuli undergo more extensive
processing prior to cortex. Frequency, envelope, spectrotemporal, and
spatial information in auditory signals are well represented before
reaching primary auditory cortex (Rees and Palmer, 2010). In contrast, in
the visual system many simple features are coded in cortex itself (Hubel,
1988). Cortical oscillations may not matter if task-relevant information is
processed well prior to cortex (e.g., in the envelope of a signal), but may
matter at higher levels engaging cortical networks involved in assessing
inter-stimulus relationships (Wisniewski et al., 2018) or extracting
meaning (e.g., in a lexical decision task; Strauβ et al., 2015). For instance,
it could be that the reason that pre-stimulus phase matters for some tasks
like lexical decision (Strauβ et al., 2015) and tone comparison (Kayser
et al., 2016) is not due to the background noise that was used. Rather, it is
due to those tasks’ dependencies on higher-level cortical areas. Unfor-
tunately, the current literature does not disambiguate these possibilities.

Here, we examined how pre-stimulus power and phase relate to
performance in a tone pattern recognition task when no background
sounds are present. If pre-stimulus EEG is only predictive when back-
ground sounds are present, no relationships with accuracy should be seen
(cf. Zoefel and Heil, 2013). Our task requires comparison of tones and
classification, and thus should require cortical processing to a larger
extent than simple detection (Chechik and Nelken, 2012). Pre-stimulus
EEG may be predictive of accuracy if the level of cortical involvement
is important. For EEG phase, results were consistent with the latter. For
pre-stimulus power, no clear relationship with accuracy was found.
Importantly, results show that background sounds are not necessary to
observe pre-stimulus phase effects on auditory performance. Rather, it
may be that task complexity is important.

2. Materials and methods

2.1. Listeners

Seventeen listeners (9 males, ages 19–33) were either paid for their
participation or were unpaid volunteers. All participants reported normal
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hearing. Three individuals were dropped from analysis due to excessively
noisy EEG data.

2.2. Ethics statement

All listeners signed an informed consent form and underwent pro-
cedures approved by the Wright-Site Institutional Review Board.

2.3. Data and code availability statement

Data and analysis code can be obtained from the last author (M.G.W.)
by emailing him at mgwisniewski@ksu.edu. Upon receipt of a request,
M.G.W. will obtain the appropriate clearance to release the data to the
requesting party.

2.4. Apparatus

Sounds were presented through Etymotic ER-2 earphones (Etymotic
Research, Elk Grove Village, IL) at ~81 dB SPL (decibel of sound pressure
level). All experimental procedures were carried out in MATLAB 2014a
(Mathworks, Natick, MA) running on Windows 7. Responses were made
via a computer keyboard. Listeners sat in a sound-attenuating booth
throughout the experiment.

2.5. Stimuli, task, and procedures

A rapid auditory pattern identification task was used (see Fig. 1; cf.
Tallal and Piercy, 1973; Warren, 1974). Stimuli were auditory pure tone
sequences, each comprising a triad of 40-ms tones with 40-ms
inter-tone-intervals. The frequencies of tones within a sequence were
either “low” (L) or “high” (H), with the lowest tone selected randomly on
every trial from a uniform distribution between 900Hz and 1100Hz.
There were six possible sequence patterns with different L/H orders: LLH,
LHL, LHH, HHL, HLH, & HLL. One pattern was selected at random with
equal a priori probabilities across sequence types, and was presented on
each trial. Two seconds after pattern onset, a response grid appeared on
screen with the 6 different L/H patterns assigned to number keys 1–6.
Response options were displayed in the same position and order as the
first six digits of the numeric keypad located at the lower right of a
standard desktop computer keyboard. (see Fig. 1). Key assignments were
randomized from trial-to-trial. For instance, if “1” was paired with “LLH”
on a given trial, “1” might be paired with “HLH” on the next trial. The
randomization served to reduce any influence of motor preparations
between correct and incorrect trials because the response could not be
known until assignments were shown on screen. On-screen feedback
(1000-ms) was presented after responses such that the word “Correct”
was displayed after correct responses and the word “Wrong” was dis-
played after incorrect responses. If a participant pressed a key other than
numbers 1 through 6, the words “WRONG KEY PRESS” were presented
on the screen, and the trial was later discarded from analysis. There was
no response deadline. Following response onset, the next trial was
initiated after a variable inter-trial-interval (Gaussian distribution,
M¼ 4050-ms, SD¼ 30-ms).

The full EEG session was preceded by a behavioral session designed to
determine the frequency separation between H and L tones at which each
individual could achieve ~50% accuracy. The task described above was
run for three 50-trial blocks, in which the frequency separation between
H and L started at 20% (Δf ¼ 100*(H-L)/L). An adaptive 1-up 1-down
procedure was used in which the frequency separation between the H
and L tones was decreased after every correct response (Δf x 0.9) and
increased after every incorrect response (Δf x 1.1). An individualized
separation was taken to be the mean frequency separation across the last
5 trials of each block (i.e., mean across 15 trials total). The mean indi-
vidualized frequency separation was M¼ 5.9% (SD¼ 4.9). The pre-
experimental behavioral session and the EEG session were always con-
ducted on separate days.
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Fig. 1. A depiction of a single trial with traces of raw EEG, 10-Hz power, and 10-Hz phase. Grey inset box on right shows an example response option display.
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For the EEG session, 5 blocks of 50 trials were run at individualized
frequency separations (250 trials total). All other parameters were as
outlined above.

2.6. EEG acquisition, preprocessing, and cleaning

EEG was recorded using a Biosemi Active II system recording at a
2048-Hz sample rate and 24-bit A/D resolution. A 70-channel array of
electrodes was used. A cap with placements for 64 electrodes arranged
according to the international 10–20 system was fitted to each partici-
pant's head. The remaining 6 electrodes were placed below each eye,
lateral to each eye, and on each mastoid. Signals were referenced online
to the Common-mode-sense/driven-right-leg (CMS/DRL) reference for
the Biosemi system (see biosemi.com). DC offsets between CMS/DRL and
each electrode were kept below 25 μV or else an electrode was discarded
from analysis.

Offline data processing, cleaning, and analysis of the results were
conducted using the open-source EEGLAB toolbox (Delorme and Makeig,
2004) and customMATLAB scripts/functions. Data were re-referenced to
linked mastoids, resampled at 256Hz (after applying an anti-aliasing
filter), high-pass filtered (1691 point zero-phase finite impulse
response (FIR); 0.25 Hz half amplitude cutoff), then low-pass filtered (69
point zero-phase FIR; 56.25 Hz half amplitude cutoff). Channels and
portions of continuous data identified by visual inspection to be
contaminated by noise or excessive movement artifacts were removed.
Remaining data were submitted to independent component analysis
(ICA). Components identified as artifactual based on their spectra and
scalp projections were subtracted from the channel data (cf. Wisniewski
et al., 2017; for review, see Jung et al., 2000). Missing channels were
then interpolated (spherical interpolation method).

2.7. Statistical analysis

Epochs were extracted from �1500ms to 1500ms relative to
sequence onset. Complex 3-cycle Morlet wavelets were used to yield
single trial time-frequency decompositions spanning 2–20Hz in 0.2 Hz
increments at 200 time points (~7ms increments). For power-based
analyses, separate mean event-related spectra (ERS) for correct and
incorrect trials were computed from the time-frequency decomposition
of individual trials. Difference images were then generated using a
percent relative power measure for each time-frequency point:

ERSdiff¼ 100 x (ERScorrect – ERSincorrect)/ERSincorrect

Here, positive values of ERSdiff indicate greater power in the correct
compared to incorrect trials. Negative values indicate the opposite.
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For phase-based analyses, we used a phase opposition sum (POS)
measure (for review, see VanRullen, 2016a,b) based on inter-trial phase
consistencies (ITPCs). ITPC is large (closer to 1) when phase is consis-
tently aligned across trials, and small (closer to 0) when phase is incon-
sistently aligned (for review, see Cohen, 2014). ITPCs were computed
separately for correct trials, incorrect trials, and all trials combined. To
compute the phase opposition sum we used the following formula:

POS ¼ ITPCcorrect þ ITPCincorrect – (2 x ITPCall)

For POS images, if correct and incorrect trials tend to have opposing
phases, POS will be large. A lower POS will result if correct and incorrect
trials tend towards random phase, or if they align at similar phases. This
is because when correct and incorrect trials are at random or similar
phases, ITPCall will be similar to ITPC for correct and incorrect trials
computed separately (i.e., similarly random, or similarly aligned). If the
angle of phase alignment is different for correct and incorrect trials, ITPC
will be low when those trials are combined. In contrast, ITPC will be high
for correct and incorrect trials computed separately (for an extensive
review, see VanRullen, 2016a,b).

We followed statistical analysis guidelines set by VanRullen (2016a,
b) that are based on testing with real and simulated EEG data. Though
this approach differs from some more standard permutation-based
testing of pre-stimulus phase effects, note that this statistical proced-
ure was chosen for empirical, not historical reasons. VanRullen (2016a,
b) found the current approach to be more efficient and less susceptible
to Type I errors compared to the standard. For both ERSdiff and POS
images, correct and incorrect trial labels were shuffled for 100 itera-
tions for each individual. An ERSdiff and POS image was recomputed for
each iteration, creating a null hypothesis distribution with a mean and
standard deviation for each time-frequency point. Each time-frequency
point in an individual's actual ERSdiff and POS image was then con-
verted to a z-score based on the mean and standard deviation of the null
hypothesis distribution. These independent z-scores were combined
across subjects using Stouffer's method (for review, see VanRullen,
2016a,b; Whitlock, 2005):

ZS ¼
Pk

i¼1Ziffiffiffi
k

p

In this formula the combined z-score (ZS) is the sum of the indi-
vidual z-scores divided by the square root of the number of tests (k).
These were then converted to p-values and interpreted using a false
discovery rate (FDR) procedure to correct for multiple comparisons
across time-frequency points and channels (p< .05; Benjamini &
Hochberg, 1995).

http://biosemi.com
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3. Results

3.1. Pattern identification accuracy

Mean proportion correct across all trials in the experiment was
M¼ 0.50 (SD¼ 0.06), confirming the appropriateness of individualized
frequency separations determined for ~50% correct. Fig. 2a depicts ac-
curacies broken up into the different tone pattern identities. There was a
significant difference among means, F (5,65)¼ 2.38, p¼ .048, ηp2¼ 0.15,
likely attributable to better than threshold level performance for the HLH
identity and worse than threshold level performance for the LHL identity.
In one-sample t-tests testing the null hypothesis of accuracy equal to 0.5
for each identity, only the HLH identity revealed significance, t
(13)¼ 2.59, p¼ .023, Cohen's d¼ 0.71. The one-sample t-test for the LHL
identity was not significant, t (13)¼ 2.11, p¼ .055, Cohen's d¼ 0.50.

Fig. 2b depicts accuracies broken up into 6 different linearly spaced
bins according to the lowest frequency tone in a pattern. There was also a
significant difference among these means, F (5,65)¼ 3.58, p¼ .006,
ηp
2¼ 0.22, trending such that frequencies nearer the center of the distri-
bution (i.e., 1000Hz) showed greater accuracy. Similar one-sample t-
tests as above found only a significant lower than threshold accuracy for
the 900–933Hz frequency bin, t (13)¼ 2.28, p¼ .04, Cohen's d¼ 0.61.

It is important to note that even though there were apparent accuracy
differences among trials with different pattern identities and frequencies,
none of these differences can be related to the pre-stimulus EEG features
we intended to analyze. That is, there is no way for a participant to have
knowledge of any of these stimulus differences before they occur. Thus,
Fig. 2. Accuracy across different tone pattern identities (a) and different fre-
quencies for the low frequency tone within a sequence (b). Note that the ab-
scissa in (b) marks rounded bin edges (e.g., 933 Hz actually represents 933:33
Hz). The horizontal dashed lines represent the desired 50% correct threshold.
The horizontal dotted lines represent chance performance.
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stimulus-related effects may only serve to obscure a relationship between
pre-stimulus EEG and pattern identification accuracy.
3.2. Pre-stimulus high-theta/low-alpha phase predicts accuracy

The upper panel in Fig. 3a shows POS for frontal electrode F3, where
phase effects were strongest. Large values of POS (hot coloration in the
figure) indicate stronger opposition of phases between correct and
incorrect trials. The black line represents the last possible data point
before pattern onset that included any post-stimulus onset data points in
the time-frequency decomposition. There was strong POS between
approximately �200 to �100-ms relative to the onset of tone patterns,
between approximately 7-11 Hz. The white outline in this region of the
figure depicts the edge of significance of this effect (FDR corrected,
p< .05), indicating that phases for correct and incorrect trials at these
time-frequency points tended to align at opposing phase positions. For
FDR corrected POS at all other scalp electrodes, see Fig. S1. The effect
was not restricted to electrode F3. The bottom panel in Fig. 3a shows
individual traces of POS at 8.2 Hz (thin black lines), along with the
combined POS (thick red line). Though there were latency differences
among individuals regarding when POS reached its peak, most in-
dividuals show evidence of increased POS in the time range between
�200 and�100ms relative to tone sequence onset. The scalp map of POS
at a point in the center of this region of significance (�.15s, 8.2 Hz) is
shown in Fig. 3b. Similar to the visual work (Busch et al., 2009) and other
auditory work (Strauβ et al., 2015), the scalp map shows a frontal dis-
tribution of POS, though slightly left lateralized. Fig. 3c plots the phase
difference values (correct minus incorrect). Note that most individuals
show a phase difference greater than 90� (cf. Strauβ et al., 2015).

To further characterize how pre-stimulus phase was related to accu-
racy, we binned individual trials into 9 different phase bins at electrode
F3, time point �0.15, and frequency 8.2 Hz (cf. Busch et al., 2009; Ng
et al., 2012). This time-frequency point was chosen because it was in the
center of the significant region of POS shown in Fig. 3. Bin sizes were
2π/9 (non-overlapping). Proportion correct was computed using trials
falling into each bin; we will refer to the bin associated with the greatest
proportion correct as the “most accurate” bin. These bins were then
sorted such that each individual's “most accurate bin” was aligned at
0 radians. Critically, this allowed us to examine a relationship between
pre-stimulus phase and accuracy even if different individuals had
different preferred phases (cf. Busch et al., 2009; Ng et al., 2012). These
data are depicted in Fig. 4. It is not surprising that the most accurate bin is
at 0, since the data were aligned this way. Interestingly, when
pre-stimulus phase differs more from the phase associated with this
“most accurate” bin, approaching the opposite phase (þ�π), accuracy de-
creases. Accuracy is lowest at bins nearest to þ

�π relative to the most
accurate bin. A repeated measures ANOVA was run on binned accuracy,
excluding bin 0. A significant effect of phase was observed, F (7,
91)¼ 2.84, p¼ .01, ηp2¼ 0.18.

To probe this effect, we compared mean accuracy for the bins closest
to the most accurate bin (red markers in Fig. 4a) to those furthest from
that most accurate bin (blue markers in Fig. 5a). This difference was
significant, as revealed by a paired-sample t-test, t (13)¼ 4.23, p< .001,
Cohen's d¼ 0.79. This effect was remarkably consistent across in-
dividuals. Fig. 4b presents a scatterplot of accuracy for far (x-axis) in
relation to close (y-axis) bins. Points falling in the red portion of the plot
represent individuals with greater accuracy for those bins closer to the
most accurate bin than those bins farther from the most accurate bin. All
but one individual showed better performance for the closest bins. The
advantage across individuals ranged from 26.5% to �4.7% with a mean
of M¼ 10.3% (SD¼ 9.1). Of further note, a supplemental analysis
revealed no significant differences in the number of any pattern type
falling into the highest and lowest accuracy phase bins by chance,
making it unlikely that the observed effects are stimulus-related (see
Fig. S2 and supplemental data). Overall, the results support a relationship



Figure 3. (a) POS at left frontal electrode
F3. The upper panel shows POS at multiple
time-frequency points. The white outline in-
dicates the area of significance after FDR
correction. Any point in the image to the left
of the black line contains no post pattern
onset data points. The lower panel shows
traces of individual POS in z-score units (thin
black lines) and combined z for POS across
individuals (thick red line). (b) Scalp map of
POS at a time-frequency point in the center
of the region of significance (�.15 s, 8.2 Hz).
The star highlights electrode F3. (c) Phase
difference values at �0.15 s and 8.2 Hz for
each subject at electrode F3.

Fig. 4. (a) Proportion correct for phase bins centered around the bin associated with the greatest number of correct responses (“most accurate bin”). For clarity, red
markers depict bins closest to the most accurate bin. Blue markers represent bins furthest from the most accurate bin. (b) Scatterplot depicting individual proportion
correct for the far bins (y-axis) and close bins (x-axis). Points in the red area indicate higher accuracy for the close over far bins. The opposite is true for the blue area.

Fig. 5. (a) ERSdiff at right frontal electrode
FC4. The upper panel shows ERSdiff at mul-
tiple time-frequency points. ‘Hot’ colors
indicate greater power for correct compared
to incorrect trials. ‘Cool’ colors indicate the
opposite. Any point in the image to the left of
the black line contains no post pattern onset
data points. The lower panel shows traces of
individual ERS in z-score units (thin black
lines) and combined z for ERS across in-
dividuals (thick red line). Note that although
there appeared to be a trend for enhanced
delta/low-theta on correct compared to
incorrect trials, this did not reach signifi-
cance after correcting for multiple compari-
sons. (b) Scalp map of ERSdiff at a time-
frequency point in the center of the
apparent delta/low-theta difference (�.15 s,
3.4 Hz). The star highlights electrode FC4.

N.E. Hansen et al. NeuroImage 199 (2019) 512–520
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Fig. 6. (a) ERPs for correct and incorrect trials at electrode F3 where pre-
stimulus phase effects were strongest. (b) POS computed at electrode F3 using
shorter 1 cycle wavelets than the 3 cycle wavelets used in original analyses of
POS (Fig. 3). Note here that any point to the left of the solid black line cannot
possibly be corrupted by post-stimulus activity, yet strong POS still exists. The
regions outlined in white were significantly significant after correcting for
multiple comparisons across time-frequency points and channels (p < .05;
fdr corrected).
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between pre-stimulus oscillatory phase and auditory pattern identifica-
tion, even without concurrent background sounds.

3.3. No pre-stimulus power differences between correct and incorrect trials

No significant pre-stimulus power differences were revealed by sta-
tistical analyses of ERSdiff after FDR correction. There was a trend for
greater delta/low-theta power on correct trials. In the interest of trans-
parent presentation of the data, and since some other work has revealed
similar pre-stimulus effects in the delta band (Hermann et al., 2016;
Kayser et al., 2016), the top panel of Fig. 5a shows an image of ERSdiff
(combined z-scores; for review, see VanRullen, 2016a,b) at electrode FC4
where this effect appeared strongest. Individual traces of power at 3.4 Hz
are shown in the bottom panel of Fig. 5a. Though some individuals
showed greater pre-stimulus delta power on correct trials, most in-
dividuals showed little effect. The scalp map in Fig. 5b shows a right
frontal distribution of ERSdiff at�0.15 s and 3.4 Hz. However, even when
a less stringent statistical criterion was applied (FDR correction including
channel FC4 only), ERSdiff failed to reach significance at any
time-frequency point.

3.4. Pre-stimulus phase effects cannot be explained by post-stimulus
activity

Due to the temporal smearing that can occur during time-frequency
analysis, there is the possibility that the results of such analyses on pre-
stimulus time windows are influenced by post-stimulus activity. In our
case, such influences may come from event-related potentials (ERPs) that
differ in amplitude or phase between conditions. We therefore conducted
two additional analyses to rule out the possibility that the pre-stimulus
phase-related effects observed above are related to post-stimulus activ-
ity in the EEG. First, we compared post-stimulus ERPs for correct and
incorrect trials. Were an influence of post-stimulus activity present, we
may have seen a difference in ERPs for the two types of trials. However,
this analysis revealed that the ERPs were virtually indistinguishable for
correct versus incorrect trials at F3 (Fig. 6a). No time points were
significantly different between correct and incorrect trials, ps> .10
(uncorrected).

In a second control check, we conducted an analysis of POS on time-
frequency transforms using shorter 1-cycle wavelets with poorer fre-
quency, but better temporal precision. If our results were due to differ-
ences in post-stimulus activity, we would expect an absence of the noted
POS effect with this shorter wavelet in the �200 to �100ms time-
window. We found that POS was apparent at similar time-frequency
points, even though these points in the transform were generated
without the inclusion of any post-stimulus onset data. In Fig. 6b these
points are those that fall to the left of the solid black line. Significance
(p< .05; fdr corrected) is highlighted by the regions outlined with white
outlines.

4. Discussion

4.1. General discussion

The current study was designed as a novel test of pre-stimulus EEG
effects on subsequent auditory task performance. We employed an
auditory pattern identification task in which sounds were presented well
above detection threshold. Importantly, there were no background
sounds utilized for masking, and the task was sufficiently complex to
involve cortical processing beyond that needed for simple detection in
silence. We found strong phase opposition between correct and incorrect
trials in a high theta/low alpha region shortly before stimulus onset
(~-200 to �100ms). When trials were binned according to pre-stimulus
phase, a clear relationship with accuracy was observed such that bins
opposite an individual's most accurate bin displayed the lowest accuracy.
Further, analyses of ERPs and an alternative time-frequency
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decomposition using 1-cycle wavelets ruled out the possibility that the
effects observed were related to post-stimulus activity. The data show
that the phase of ongoing brain oscillations prior to stimulus presentation
can predict auditory performance even without background masking or
confounding post-stimulus differences between correct and incorrect
trials.

So why have we found effects of pre-stimulus phase without back-
ground sounds, while others have not? We suggest that the complexity of
the task at hand matters in a substantial way for auditory perception. The
auditory system differs from the visual system in that a large amount of
processing occurs prior to cortex (e.g., processing of frequency and en-
velope information; for review, see Pratt, 2011; Rees and Palmer, 2010).
Oscillations in EEG largely reflect cortical activity (for review, see
Buzs�aki, 2006; Luck, 2005) and there is considerable evidence that they
are related to excitatory and inhibitory states in cortex (for review, see
Buzs�aki, 2006; Jensen and Mazaheri, 2010; Schroeder and Lakatos,
2009). This may explain why detection tasks with no background
masking, which have been used in examinations of pre-stimulus phase
effects in the visual domain (e.g. Busch et al., 2009), may not reveal
pre-stimulus phase effects in audition. Our task required listeners to
discriminate pitch differences, identify a pattern (e.g., High-Low-High),
and assign labels to what they heard. This higher complexity task is
likely to be more cortically intensive than detection of simple tones,
which likely is based on processing of stimulus envelope in regions prior
to cortex (Rees and Palmer, 2010; Scharf, 1998). One other recent work
supports this position. Ten Oever and Sack (2015) found that identifi-
cation of ambiguous syllables was influenced by the pre-stimulus phase
in the high theta/low alpha range. In that study (Experiment 1),
pre-stimulus phase predicted whether the ambiguous syllable was going
to be perceived as a/da/or a/ga/. No background or entraining sounds
were employed, yet pre-stimulus phase effects were seen. This may be
because speech is also a complex stimulus that receives extensive cortical
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processing (Hickok and Poeppel, 2007; Wisniewski et al., 2017). The
observance of pre-stimulus phase effects on detection may require either
entrainment, or stimulus induced increases in oscillatory power (e.g.,
with detection of gaps in ongoing stimulation, or detection of sounds in
noise).

Several theories posit that the natural rhythms associated with speech
features at different levels (i.e. phonemic attributes, syllabic rate, lexical
and phrasal units) are fundamental for organizing incoming verbal in-
formation into the temporal units (Giraud and Poeppel, 2012; Luo and
Poeppel, 2007). These theories have supported the idea that pre-stimulus
oscillations only matter when the auditory system is forced into an
entrained state or a state of enhanced oscillatory power (e.g., VanRullen,
2016b). In two earlier studies using background stimulation in their
methods, pre-stimulus phase also appeared to modulate performance for
lexical decision (Strauβ et al., 2015) and consecutive tone comparison on
dimensions of frequency and amplitude (Kayser et al., 2016). However,
the current results reframe this earlier work and suggest that finding
pre-stimulus phase effects in such studies may result from task
complexity. Future work should aim to explore further how task-related
attributes affect the predictive capacity of pre-stimulus EEG.

Another intriguing feature of the current data, which is concurrent
with earlier work (e.g., Busch et al., 2009; Kayser et al., 2016; Strauβ
et al., 2015), is that effects were strongest at frontal electrodes. Kayser
et al. (2016) used two auditory discrimination tasks in an attempt to
dissociate oscillatory state influences on earlier sensory processes from
those on higher-level decision processes. They also compared activity in
both auditory cortical networks and frontoparietal areas across the two
task conditions. In auditory networks, phase did not influence
decision-making, but power affected encoding of sensory information.
Over frontal and parietal regions, theta and alpha phase appeared to
influence decision-making, but was not involved in the accumulation of
sensory evidence. The study suggests that there are two consistent
mechanisms by which pre-stimulus activity affects perception, and the
time scales depend on the specific brain regions engaged by the respec-
tive task. The effects we observed were distributed frontally. It is possible
that our results, and those of other researchers seeing similar frontal
distributions, are related to effects of pre-stimulus phase on decision
processes rather than sensory-based processes.

The absence of any effects for pre-stimulus power is consistent with
recent explorations into the role of alpha oscillations more generally.
Alpha band activity has been suggested to have a negative correlation
with overall baseline activity; that is, reduced alpha power is associated
with global baseline excitability, rather than affecting signal sensitivity
(Iemi et al., 2017). In such a scenario, alpha power influences detection
criterion, but may have no effect on discrimination task outcomes. Our
task relied on pitch discrimination, rather than detection. Also, decision
confidence appears to correlate similarly with alpha power, for both
detection and discrimination (Samaha et al., 2017; W€ostmann et al.,
2019). We did not obtain subject confidence ratings in the current study,
but this may be a useful addition in further studies (cf. Zakrzewski et al.,
2019).

4.2. Considerations

We did discover some stimulus-related behavioral effects in the cur-
rent paradigm. Participants performed variably depending upon the
particular pattern that was presented and the frequency range of stimuli.
Frequency range and pattern were selected randomly on each trial, and a
participant had no way of knowing before presentation what these se-
lections were. These behavioral effects likely only serve to obscure a
relationship between pre-stimulus EEG and pattern identification accu-
racy. Additionally, a supplementary analysis (see Fig. S2) yielded no
systematic relationship between pattern type with binned phase (e.g., if
most high-low-high trials fell near the optimal phase bin by chance),
making it unlikely that observed effects were due to the differences
among pattern types. We expect that if we were able to correct for these
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differences in stimuli, the overall phase opposition effect would quite
possibly be stronger than the effect observed in the current study, not
weaker. It is possible that these stimulus differences could account for the
lack of significant relationships between pre-stimulus power and accu-
racy. There are many studies that demonstrate effects of pre-stimulus
power (Bernasconi et al., 2011; Ergenoglu et al., 2004; Hermann et al.,
2016; Kayser et al., 2016; Leske et al., 2015; Limbach and Corballis,
2016; Samaha et al., 2017; Strauβ et al., 2015), and we cannot refute that
pre-stimulus power relates to the accuracy of perceptual decisions.

Because of the short jitter in the inter-stimulus interval in the current
study (see Methods), we cannot rule out a role of entrainment underlying
the phase effects seen here. Our study differs from the previous work
using entrainment, in that we did not use stimuli intended to induce
entrainment specifically in the frequency ranges we were investigating. If
there was entrainment to the inter-trial interval, this would occur in a
lower frequency band than that observed. However, the stimuli we
employed were inherently rhythmic tone triplets. Participants could have
reset the phase of alpha oscillations based on a rough global rhythm (e.g.,
~0.25 Hz with some noise from variable response times) such that alpha
would align to as much relevant information in the stimulus as possible.
Note, however, that this reset of alpha would be more likely an
experience-based reset, not stimulus driven. This is because there was no
present rhythmic stimulation in the alpha range in the pre-stimulus in-
terval where effects manifested. Nevertheless, we cannot unequivocally
rule out that some sophisticated rhythmic processing mode was at play
(Schroeder and Lakatos, 2009). It would be interesting to examine the
possibility of such a learned entrainment of alpha phase to lower fre-
quency delta rhythms.

4.3. Future directions

The findings reported here, and other related work in the literature,
have important ramifications for work in applied research domains. For
instance, aircraft operators often have many signals to attend to, both
visual and auditory. While much work has been done exploring the
perceptual and cognitive effects of longer-term brain states such as
drowsiness or acute stress (Thomas et al., 2000; Hermans et al., 2011;
Yuen et al., 2009; Arnsten, 2009), understanding the influences of
short-term shifts in brain state may allow for optimizing the conditions
under which an operator can detect, identify, and understand crucial
signals. There are many cases in which one might hope to use
pre-stimulus EEG information to augment performance (e.g., identifica-
tion of cockpit warning sounds; Nees and Walker, 2011). Being able to
present signals in alignment with these short-term states may be one
approach for achieving such optimization; inducing oscillatory entrain-
ment in the operator herself may be another. With advances in real-time
EEG data analysis (Lotte et al., 2018) and interventions with brain
stimulation (Thut et al., 2012; Zoefel et al., 2018), it may in the future be
possible to use pre-stimulus measures as gauges of ongoing brain state in
real time. This could be useful in human-system interactions in which an
operator is performing a monitoring function that does not require a
behavioral response. Pre-stimulus measures could provide an index of
performance when overt action is absent.

This work directs us towards a deeper investigation of pre-stimulus
phase effects in audition. Though it for the first time demonstrates a
relationship between pre-stimulus phase and accuracy in an auditory
perceptual task without background or masking sounds, there are a
number of unanswered questions for future research. A logical next step
is to test the impact of task complexity by varying task demands within an
experiment. One way this could be done is by presenting listeners with
identical sounds between conditions, but have different degrees of
necessary cortical involvement. For instance, in one condition listeners
might have to decide on the lateralization of a sound source, but in the
other make a decision about whether or not that sound was something
they heard previously. It will also be useful in future studies to manip-
ulate the presence of background sounds. This approach would allow a
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more direct assessment of the impacts of background noise on the
capability of pre-stimulus EEG to predict perceptual accuracy.

5. Conclusion

The present work supports and extends the growing understanding
that ongoing brain-states significantly influence how we perceive and
respond to incoming stimuli. We found strong evidence for phase-based
prediction of task performance in the auditory domain, in the absence of
background sound. Importantly, these predictions appear to rely on a
relatively high level of task complexity; how the level of complexity alters
the predictive ability more specifically is a question for future work.
Higher order entrainment processes (e.g., resetting of alpha phase based
on lower-frequency entrainment) also deserve further exploration.

Declarations of interest

None.

Acknowledgments

N.E.H. and M.G.W. were partially supported by fellowships provided
by the Oak Ridge Institute for Science and Education and a seedling grant
provided by the U.S. Air Force Chief Scientist's office.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.05.054.

References

Arnsten, A., 2009. Stress signaling pathways that impair prefrontal cortex structure and
function. Nat. Rev. Neurosci. 10, 410–422.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1), 289–300.

Bernasconi, F., Manuel, A.L., Murray, M.M., Spierer, L., 2011. Pre-stimulus beta
oscillations within left posterior sylvian regions impact auditory temporal order
judgment accuracy. Int. J. Psychophysiol. 79, 244–248. https://doi.org/10.1016/j.i
jpsycho.2010.10.017.

Besle, J., Schevon, C.A., Mehta, A.D., Lakatos, P., Goodman, R.R., McKhann, G.M.,
Schroeder, C.E., 2011. Tuning of the human neocortex to the temporal dynamics of
attended events. J. Neurosci. 31 (9), 3176–3185. https://doi.org/10.1523/
JNEUROSCI.4518-10.2011.

Busch, N.A., Dubois, J., VanRullen, R., 2009. The phase of ongoing EEG oscillations
predicts visual perception. J. Neurosci. 29, 7869–7876. https://doi.org/10.1523/JNE
UROSCI.0113-09.2009.

Buzs�aki, G., 2006. Rhythms of the Brain. Oxford University Press, New York, NY.
Chechik, G., Nelken, I., 2012. Auditory abstraction from spectro-temporal features to

coding auditory entities. Proc. Natl. Acad. Sci. Unit. States Am. 201111242
https://doi.org/10.1073/pnas.1111242109.

Cohen, M.X., 2014. Analyzing Neural Time Series Data: Theory and Practice. MIT Press.
Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial

EEG dynamics including independent component analysis. J. Neurosci. Methods 134
(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

Dugu�e, L., Marque, P., VanRullen, R., 2011. The phase of ongoing oscillations mediates
the causal relation between brain excitation and visual perception. J. Neurosci. 31
(33), 11889–11893. https://doi.org/10.1523/JNEUROSCI.1161-11.2011.

Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., Uresin, Y., 2004.
Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn.
Brain Res. 20 (3), 376–383. https://doi.org/10.1016/j.cogbrainres.2004.03.009.

Giraud, A.L., Poeppel, D., 2012. Cortical oscillations and speech processing: emerging
computational principles and operations. Nat. Neurosci. 15, 511–517.

Henry, M.J., Herrmann, B., Obleser, J., 2016. Neural microstates govern perception of
auditory input without rhythmic structure. J. Neurosci. 36 (3), 860–871. https://
doi.org/10.1523/JNEUROSCI.2191-15.2016.

Henry, M.J., Obleser, J., 2012. Frequency modulation entrains slow neural oscillations
and optimizes human listening behavior. Proc. Natl. Acad. Sci. Unit. States Am. 109
(49), 20095–20100. https://doi.org/10.1073/pnas.1213390109.

Hermann, B., Henry, M.J., Haegens, S., Obleser, J., 2016. Temporal expectations and
neural amplitude fluctuations in auditory cortex interactively influence perception.
Neuroimage 124, 487–497. https://doi.org/10.1016/j.neuroimage.2015.09.019.

Hermans, E.J., Van Marle, H.J., Ossewaarde, L., Henckens, M.J., Qin, S., Van
Kesteren, M.T., Fern�andez, G., 2011. Stress-related noradrenergic activity prompts
large-scale neural network reconfiguration. Science 334 (6059), 1151–1153.
519
Hickok, G., Poeppel, D., 2007. The cortical organization of speech processing. Nat. Rev.
Neurosci. 8 (5), 393.

Hubel, D.H., 1988. Eye, Brain, and Vision. Scientific American Library, New York, NY.
Iemi, L., Chaumon, M., Crouzet, S.M., Busch, N.A., 2017. Spontaneous neural oscillations

bias perception by modulating baseline excitability. J. Neurosci. 37 (4), 807–819.
Jensen, O., Mazaheri, A., 2010. Shaping functional architecture by oscillatory alpha

activity: gating by inhibition. Front. Hum. Neurosci. 4, 1–8. https://doi.org/10.33
89/fnhum.2010.00186.

Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., Mckeown, M.J., Iragui, V.,
Sejnowski, T.J., 2000. Removing electroencephalographic artifacts by blind source
separation. Psychophysiology 37 (2), 163–178.

Kayser, S.J., McNair, S.W., Kayser, C., 2016. Prestimulus influences on auditory
perception from sensory representations and decision processes. Proc. Natl. Acad. Sci.
Unit. States Am. 113 (17), 4842–4847. https://doi.org/10.1073/pnas.1524087113.

Leske, S., Ruhnau, P., Frey, J., Lithari, C., Müller, N., Hartmann, T., Weisz, N., 2015. Pre-
stimulus network integration of auditory cortex predisposes near-threshold
perception independently of local excitability. Cerebr. Cortex 25, 4898–4907.
https://doi.org/10.1093/cercor/bhv212.

Limbach, K., Corballis, P.M., 2016. Prestimulus alpha power influences response criterion
in a detection task. Psychophysiology 53, 1154–1164. https://doi.org/10.1111/psyp
.12666.

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F.,
2018. A review of classification algorithms for EEG-based brain-computer interfaces:
a 10 year update. J. Neural Eng. 15, 031005.

Luck, S.J., 2005. Ten Simple Rules for Designing ERP Experiments. Event-Related
Potentials: A Methods Handbook, 262083337.

Luo, H., Poeppel, D., 2007. Phase patterns of neuronal responses reliably discriminate
speech in human auditory cortex. Neuron 54, 1001–1010. https://doi.org/10.1016/j
.neuron.2007.06.004.

Mathewson, K.E., Lleras, A., Beck, D.M., Fabiani, M., Ro, T., Gratton, G., 2011. Pulsed out
of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical
processing. Front. Psychol. 2. https://doi.org/10.3389/fpsyg.2011.00099.

MATLAB and Statistics Toolbox Release, 2014a. The MathWorks, Inc., Natick,
Massachusetts, United States.

Milton, A.M.C., Pleydell-Pearce, C.W., 2016. The phase of pre-stimulus alpha oscillations
influences the visual perception of stimulus timing. Neuroimage 133, 53–61.
https://doi.org/10.1016/j.neuroimage.2016.02.065.

Nees, M.A., Walker, B.N., 2011. Auditory displays for in-vehicle technologies. Reviews of
Human Factors and Ergonomics 7, 58–99. https://doi.org/10.1177/2F1557234X114
10396.

Neuling, T., Rach, S., Wagner, S., Wolters, C.H., Herrmann, C.S., 2012. Good vibrations:
oscillatory phase shapes perception. Neuroimage 63 (2), 771–778. https://doi.
org/10.1016/j.neuroimage.2012.07.024.

Ng, B.S.W., Schroeder, T., Kayser, C., 2012. A precluding but not ensuring role of
entrained low-frequency oscillations for auditory perception. J. Neurosci. 32,
12268–12276. https://doi.org/10.1523/JNEUROSCI.187712.2012.

Peelle, J.E., Sommers, M.S., 2015. Prediction and constraint in audiovisual speech
perception. Cortex 68, 169–181.

Pratt, H., 2011. Sensory ERP Components. The Oxford Handbook of Event-Related
Potential Components, pp. 89–114.

Rees, A., Palmer, A.R., 2010. The Oxford Handbook of Auditory Science: the Auditory
Brain. Oxford University Press, Oxford, UK.

Samaha, J., Iemi, L., Postle, B.R., 2017. Prestimulus alpha-band power biases visual
discrimination confidence, but not accuracy. Conscious. Cognit. 54, 47–55. https
://doi.org/10.1016/j.concog.2017.02.005.

Scharf, B., 1998. Auditory attention: the psychoacoustical approach. In: Pashler, H. (Ed.),
Attention. Psychology Press, London, UK, pp. 75–117.

Schroeder, C.E., Lakatos, P., 2009. Low-frequency neuronal oscillations as instruments of
sensory selection. Trends Neurosci. 32 (1), 9–18. https://doi.org/10.1016/j.tins.200
8.09.012.

Strauß, A., Henry, M.J., Scharinger, M., Obleser, J., 2015. Alpha phase determines
successful lexical decision in noise. J. Neurosci. 35, 3256–3262. https://doi.org/1
0.1523/JNEUROSCI.3357-14.2015.

Stefanics, G., Hangya, B., Hern�adi, I., Winkler, I., Lakatos, P., Ulbert, I., 2010. Phase
entrainment of human delta oscillations can mediate the effects of expectation on
reaction speed. J. Neurosci. 30 (41), 13578–13585. https://doi.org/10.1523/JNE
UROSCI.0703-10.2010.

Tallal, P., Piercy, M., 1973. Deficits of non-verbal auditory perception in children with
developmental dyslexia. Nature 241, 468–469.

Ten Oever, S., Sack, A.T., 2015. Oscillatory phase shapes syllable perception. Proc. Natl.
Acad. Sci. Unit. States Am. 112 (52), 15833–15837. https://doi.org/10.1073/pnas.1
517519112.

Thomas, M., Sing, H., Belenky, G., Holcomb, H., Mayberg, H., Dannals, R., Welsh, A.,
2000. Neural basis of alertness and cognitive performance impairments during
sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain
activity. J. Sleep Res. 9 (4), 335–352. https://doi.org/10.1046/j.1365-2869.2000.00
225.x.

Thut, G., Miniussi, C., Gross, J., 2012. The functional importance of rhythmic activity in
the brain. Curr. Biol. 22, R658–R663. https://doi.org/10.1016/j.cub.2012.06.061.

VanRullen, R., 2016a. How to evaluate phase differences between trial groups in ongoing
electrophysiological signals. Front. Neurosci. 10, 426. https://doi.org/10.3389/fni
ns.2016.00426.

VanRullen, R., 2016b. Perceptual cycles. Trends Cognit. Sci. 20, 723–735. https://doi.o
rg/10.1016/j.tics.2016.07.006.

https://doi.org/10.1016/j.neuroimage.2019.05.054
https://doi.org/10.1016/j.neuroimage.2019.05.054
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref2
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref2
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref2
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref61
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref61
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref61
https://doi.org/10.1016/j.ijpsycho.2010.10.017
https://doi.org/10.1016/j.ijpsycho.2010.10.017
https://doi.org/10.1523/JNEUROSCI.4518-10.2011
https://doi.org/10.1523/JNEUROSCI.4518-10.2011
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref6
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref6
https://doi.org/10.1073/pnas.1111242109
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref62
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1523/JNEUROSCI.1161-11.2011
https://doi.org/10.1016/j.cogbrainres.2004.03.009
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref12
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref12
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref12
https://doi.org/10.1523/JNEUROSCI.2191-15.2016
https://doi.org/10.1523/JNEUROSCI.2191-15.2016
https://doi.org/10.1073/pnas.1213390109
https://doi.org/10.1016/j.neuroimage.2015.09.019
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref63
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref63
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref63
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref63
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref63
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref64
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref64
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref16
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref65
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref65
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref65
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref18
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref18
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref18
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref18
https://doi.org/10.1073/pnas.1524087113
https://doi.org/10.1093/cercor/bhv212
https://doi.org/10.1111/psyp.12666
https://doi.org/10.1111/psyp.12666
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref22
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref22
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref22
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref66
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref66
https://doi.org/10.1016/j.neuron.2007.06.004
https://doi.org/10.1016/j.neuron.2007.06.004
https://doi.org/10.3389/fpsyg.2011.00099
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref67
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref67
https://doi.org/10.1016/j.neuroimage.2016.02.065
https://doi.org/10.1177/2F1557234X11410396
https://doi.org/10.1177/2F1557234X11410396
https://doi.org/10.1016/j.neuroimage.2012.07.024
https://doi.org/10.1016/j.neuroimage.2012.07.024
https://doi.org/10.1523/JNEUROSCI.187712.2012
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref29
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref29
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref29
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref68
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref68
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref68
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref30
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref30
https://doi.org/10.1016/j.concog.2017.02.005
https://doi.org/10.1016/j.concog.2017.02.005
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref69
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref69
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref69
https://doi.org/10.1016/j.tins.2008.09.012
https://doi.org/10.1016/j.tins.2008.09.012
https://doi.org/10.1523/JNEUROSCI.3357-14.2015
https://doi.org/10.1523/JNEUROSCI.3357-14.2015
https://doi.org/10.1523/JNEUROSCI.0703-10.2010
https://doi.org/10.1523/JNEUROSCI.0703-10.2010
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref35
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref35
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref35
https://doi.org/10.1073/pnas.1517519112
https://doi.org/10.1073/pnas.1517519112
https://doi.org/10.1046/j.1365-2869.2000.00225.x
https://doi.org/10.1046/j.1365-2869.2000.00225.x
https://doi.org/10.1016/j.cub.2012.06.061
https://doi.org/10.3389/fnins.2016.00426
https://doi.org/10.3389/fnins.2016.00426
https://doi.org/10.1016/j.tics.2016.07.006
https://doi.org/10.1016/j.tics.2016.07.006


N.E. Hansen et al. NeuroImage 199 (2019) 512–520
VanRullen, R., Zoefel, B., Ilhan, B., 2014. On the cyclic nature of perception in vision
versus audition. Philos. Trans. Royal Soc. B 369, 20130214. https://doi.org/10.
1098/rstb.2013.0214.

Warren, R.M., 1974. Auditory pattern recognition by untrained listeners. Percept.
Psychophys. 15, 495–500. https://doi.org/10.3758/BF03199291.

Whitlock, M.C., 2005. Combining probability from independent tests: the weighted Z-
method is superior to Fisher's approach. J. Evol. Biol. 18, 1368–1373. https://doi.
org/10.1111/j.1420-9101.2005.00917.x.

Wisniewski, M.G., Iyer, N., Thompson, E.R., Simpson, B.D., 2018. Sustained frontal
midline theta enhancements during effortful listening track working memory
demands. Hear. Res. 358, 37–41.

Wisniewski, M.G., Thompson, E.R., Iyer, N., 2017. Theta- (4-8 Hz) and alpha-power (8-13
Hz) enhancements in the electroencephalogram as an auditory delayed match-to-
sample task becomes impossibly difficult. Psychophysiology 54, 1916–1928.

W€ostmann, M., Herrmann, B., Maess, B., Obleser, J., 2016. Spatiotemporal dynamics of
auditory attention synchronize with speech. Proc. Natl. Acad. Sci. Unit. States Am.
201523357 https://doi.org/10.1073/pnas.1523357113.
520
W€ostmann, M., Waschke, L., Obleser, J., 2019. Prestimulus neural alpha power predicts
confidence in discriminating identical auditory stimuli. Eur. J. Neurosci. 49, 94–105.

Yuen, E.Y., Liu, W., Karatsoreos, I.N., Feng, J., McEwen, B.S., Yan, Z., 2009. Acute stress
enhances glutamatergic transmission in prefrontal cortex and facilitates working
memory. Proc. Natl. Acad. Sci. Unit. States Am. 106, 14075-1. https://doi.org/10.10
73/pnas.0906791106.

Zakrzewski, A.C., Wisniewski, M.G., Iyer, N., Simpson, B.D., 2019. Confidence tracks
sensory- and decision-related ERP dynamics during auditory detection. Brain Cogn.
(in press).

Zoefel, B., Archer-Boyd, A., Davis, M.H., 2018. Phase entrainment of brain oscillations
causally modulates neural responses to intelligible speech. Curr. Biol. 28 (3),
401–408. https://doi.org/10.1016/j.cub.2017.11.071.

Zoefel, B., Heil, P., 2013. Detection of near-threshold sounds is independent of EEG phase
in common frequency bands. Front. Psychol. 4, 262. https://doi.org/10.3389/fpsyg.2
013.00262.

Zoefel, B., VanRullen, R., 2015. Selective perceptual phase entrainment to speech rhythm
in the absence of spectral energy fluctuations. J. Neurosci. 35, 1954–1964. https://
doi.org/10.1523/JNEUROSCI.3484-14.2015.

https://doi.org/10.1098/rstb.2013.0214
https://doi.org/10.1098/rstb.2013.0214
https://doi.org/10.3758/BF03199291
https://doi.org/10.1111/j.1420-9101.2005.00917.x
https://doi.org/10.1111/j.1420-9101.2005.00917.x
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref45
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref45
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref45
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref45
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref70
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref70
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref70
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref70
https://doi.org/10.1073/pnas.1523357113
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref71
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref71
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref71
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref71
https://doi.org/10.1073/pnas.0906791106
https://doi.org/10.1073/pnas.0906791106
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref48
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref48
http://refhub.elsevier.com/S1053-8119(19)30446-X/sref48
https://doi.org/10.1016/j.cub.2017.11.071
https://doi.org/10.3389/fpsyg.2013.00262
https://doi.org/10.3389/fpsyg.2013.00262
https://doi.org/10.1523/JNEUROSCI.3484-14.2015
https://doi.org/10.1523/JNEUROSCI.3484-14.2015

	Pre-stimulus brain state predicts auditory pattern identification accuracy
	1. Introduction
	2. Materials and methods
	2.1. Listeners
	2.2. Ethics statement
	2.3. Data and code availability statement
	2.4. Apparatus
	2.5. Stimuli, task, and procedures
	2.6. EEG acquisition, preprocessing, and cleaning
	2.7. Statistical analysis

	3. Results
	3.1. Pattern identification accuracy
	3.2. Pre-stimulus high-theta/low-alpha phase predicts accuracy
	3.3. No pre-stimulus power differences between correct and incorrect trials
	3.4. Pre-stimulus phase effects cannot be explained by post-stimulus activity

	4. Discussion
	4.1. General discussion
	4.2. Considerations
	4.3. Future directions

	5. Conclusion
	Declarations of interest
	Acknowledgments
	Appendix A. Supplementary data
	References


