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Abstract

Previous work supports an age-specific impairment for recognition memory of pairs of

words and other stimuli. The present study tested the generalization of an associative deficit

across word, name, and nonword stimulus types in younger and older adults. Participants

completed associative and item memory tests in one of three stimulus conditions and made

metacognitive ratings of perceptions of self-efficacy, task success (“postdictions”), strategy

success, task effort, difficulty, fatigue, and stamina. Surprisingly, no support was found for

an age-related associative deficit on any of the stimulus types. We analyzed our data further

using a multilayer perceptron artificial neural network. The network was trained to classify

individuals as younger or older and its hidden unit activities were examined to identify data

patterns that distinguished younger from older participants. Analysis of hidden unit activities

revealed that the network was able to correctly classify by identifying three different clusters

of participants, with two qualitatively different groups of older individuals. One cluster of

older individuals found the tasks to be relatively easy, they believed they had performed

well, and their beliefs were accurate. The other cluster of older individuals found the tasks to

be difficult, believed they were performing relatively poorly, yet their beliefs did not map

accurately onto their performance. Crucially, data from the associative task were more use-

ful for neural networks to discriminate between younger and older adults than data from the

item task. This work underscores the importance of considering both individual and age dif-

ferences as well as metacognitive responses in the context of associative memory

paradigms.

Introduction

Research has revealed an age-specific impairment for recognition memory of pairs of words

and other stimuli [1–5]. Older adults have greater difficulty remembering associations between

components of information (e.g., a person’s face and name) than individual components (e.g.,
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a person’s face, a person’s name; [6]). Most investigations of this effect have used an experi-

mental procedure involving item-associative recognition tests (e.g., [7]). For example, after

studying a list of word-pairs (associates) such as wardrobe-ocean, participants are asked to

identify the individual words they studied (e.g., wardrobe) as “old” and words they did not

study (e.g., circus) as “new.” Younger and older adults often perform equally well on such item

tests. However, when they are asked to identify pairs (e.g., wardrobe-summer) as “old” or

“new” in the associative test, both younger and older adults perform worse than they did on

the item test. Importantly, older adults show a larger drop in performance on the associative

test compared to younger adults. This dissociation is known as the associative deficit hypothe-

sis (ADH; [4]).

Several reasons have been proposed to explain the age-specific associative deficit. First, dif-

ferences in encoding strategies used within and between age groups could explain the deficit

[8–10]. Various strategies can be used during associative recognition tasks, including silently

repeating the word pair, visualization, sentence generation, inferring personal relevance, and

rhyming [11]. Some of these strategies are more effective for accurate recall or recognition

than others. For example, when studying the word-pair, wardrobe-ocean, an elaborative encod-

ing strategy might include visualizing a large wooden wardrobe sinking to the bottom of the

ocean. The strength of this mental image mediator may predict successful retrieval during the

associate test when the participant is presented wardrobe-summer, and correctly identifies the

word pair as “new” [3]. Some have argued that the age-specific associative deficit is a result of

older adults experiencing difficulty merging or binding together various aspects of a word-pair

into a single unit during encoding ([4, 12]; see also [13] for a similar argument applied to

development of elaboration skill during adolescence). If the unit is weak, nonexistent, or

unavailable at retrieval, memory performance will be poorer. This outcome may be more likely

in older adults if they are unable or unlikely to use effortful encoding strategies such as elabora-

tion. Younger adults, on the other hand, have the cognitive resources (e.g., working memory

capacity) to engage in elaborative encoding, making them more successful at paired-associate

memory tasks [14].

Age differences in encoding strategies might explain age differences in associative memory

but why do older adults often perform equivalently to younger adults on the item task? To

explain this age by test-type interaction effect, researchers have suggested that existing knowl-

edge may be especially helpful to older adults on the item test, boosting their performance

above that on the associative task through the creation of new concepts and/or mediators [1,

15–17]. Compared to college-aged students, older adults are likely to have a larger assortment

of experiences and knowledge that can support performance in a single-item recognition task

[16]. Of course, this benefit would depend on the types of items comprising the study and test

lists. Arguably, younger adults may have enough experience to remember common words,

and older adults do not always perform as well as younger adults on item recognition tasks. In

fact, some of the earliest studies in cognitive aging show significant age impairment on single-

item recognition tasks (e.g., [18, 19]).

Explanations for age differences in performance on the associative task are hotly debated,

with no current consensus [6, 20–22]. The associative deficit, though robust (for review, see

[23]), varies in magnitude across studies. Research has shown that different test formats (e.g.,

four-alternative forced-choice) affect the strength of the deficit (e.g., [8, 24]). For example,

older adults perform better on associative recognition tasks when demands on strategic

retrieval are reduced [8]. This implies that the age-specific associative deficit is related to pro-

cesses at retrieval. In fact, Fox et al. [3] found that strength of mediators at encoding did not

vary between younger and older adults (cf. [25]) but that only younger adults appeared to ben-

efit from mediator strength at test, by producing fewer false alarms than older adults to
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recombined pairs of words. Additionally, the deficit is attenuated by manipulating both encod-

ing and retrieval instructions, for example, when creating a sentence including the two words

[26]. Thus, receiving instructions that support processing during study and test reduces the

associative deficit in older adults (also, see [27, 28]).

Furthermore, the deficit seems to depend on type of stimuli used in the memory task. Age-

related associative deficit patterns have been found for name–face pairs [16, 29], picture pairs

[30], semantic pairs (e.g., occupation) of faces and names [31], and face–spatial location pairs

[32]. In contrast, the deficit is absent for non-words (e.g., bligma, lossens) [1], and proper

name pairs [2]. Badham and Maylor [1] suggest that because pre-existing knowledge cannot

be used to remember non-word stimuli, younger and older adults rely on familiarity-based

processing, leading them to perform similarly on item and associative tasks. A related argu-

ment has been made for name-name word pairs, because, like non-word pairs, names carry lit-

tle inherent semantic structure by which to support creating elaborative or imagery-based

associations between two proper names [2]. As a result, younger adults perform similarly to

older adults on name-pair retrieval tasks. Recently, McGillivray and Castel [33] found age-

equivalent memory performance when word pairs were related, suggesting prior knowledge

diminished the age-related memory deficit (e.g., [34]).

Together, these studies suggest that the age-specific associative deficit may be task- and

stimulus- specific, and may depend on whether encoding and/or recollection is supported by

test format and instruction. These characteristics are properties of the to-be-learned material.

However, characteristics of the learner are brought to bear in learning situations as well. As

discussed earlier, differences in strategy use at encoding and retrieval affect memory outcomes.

Strategy use does not occur in a vacuum but rather is deployed by the learner as the situation

demands it. For example, while studying for a vocabulary exam in French 101, a student may

monitor her ongoing learning and, based on feedback collected during study (e.g., testing

one’s knowledge with flashcards or quiz questions), she may decide to change or continue

using her study strategy (e.g., use of mnemonics, visualization, rhyming, etc.). A student who

monitors her studying behavior by assessing progress towards a learning goal and shifts strate-

gies accordingly is demonstrating metacognition, that is, monitoring and control of cognitive

processes during learning [35–38]. Research shows that strategy use and metacognitive beliefs

affect learning and memory outcomes generally, and in research focusing specifically on meta-

cognitive aging (for review, see [11; 39–41]). One purpose of the present study was to apply

our knowledge of current research on metacognitive aging to the age-specific associative defi-

cit by analyzing interrelationships between subjective reports of item and associative memory

experiences before study and after test.

By analyzing metacognitive processing at study and test, researchers might uncover under-

lying cognitive mechanisms tied to associative memory and its failure. Metacognitive mecha-

nisms might explain why older adults don’t always exhibit an associative deficit. Different

types of tasks, instructions, and stimuli may support the use and effectiveness of metacognitive

monitoring and control processes. For example, individuals may deploy different memory

strategies when studying items versus associates. Additionally, metacognitive confidence

judgements, pre-test and post-test performance predictions, and perceived ratings of strategies

used, effort expended, and task experience (e.g., difficulty), may vary between item and asso-

ciative memory tasks, and should vary given the different task demands associated with learn-

ing and remembering items versus pairs. Thus, we might expect individuals to provide higher

judgments of confidence for learning items than pairs.

Some researchers have posited metamemory (i.e., metacognition in the memory domain)

as a predictor of the age-specific associative memory deficit (e.g., [42, 43]) but few have actually

asked participants to report metacognitive judgments during tests of the age-related associative
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deficit. In one study, self-reported metamemory beliefs were significantly related to strategy

success and associative memory [14]. In other work, Berry et al. [2] showed that participants

appeared to be aware of differences between test type (associative, item). They asked younger

and older adults to make judgments about their performance (e.g., On a scale from 1%-100%,

how much did you remember in this study?) after completing associative and item recognition

tasks. Overall, these postdictions were higher for the item test than for the associative test, indi-

cating good metacognitive tracking of actual recognition patterns. However, analyses of age

differences showed that younger adults made accurate postdiction ratings on both item and

associative tests, but that older adults’ postdiction ratings were accurate only on the associative

test (they underestimated their performance on the item test). Relatedly, Hertzog, Kidder,

Powell-Moman, and Dunlosky [44] found aging did not affect metacognitive monitoring dur-

ing encoding, despite a decline in associative memory. These results challenge the suggestion

that impairment in metamemory explains the associative deficit in older adults [42, 43].

Beyond monitoring accuracy, research that has focused on metacognitive control processes

at the strategy-use level sheds some light on the role of metamemory vis-à-vis the associative

deficit. Specifically, Bender and Raz [14] found that age-related differences in working mem-

ory accounted for a significant portion of variance in recognition of associations and endorse-

ment of shallow strategies (e.g., repetition). Stronger endorsement of effective, deep encoding

strategies (e.g., interactive imagery or sentence generation) was linked to more correct and

fewer false recognitions of associations. Conversely, belief in inefficient shallow strategies was

associated with poor hit rates for items and associations. False beliefs in the efficacy of certain

strategies may cause individuals to use ineffective encoding strategies. Relatedly, Berry et al.

[2] found that perceived strategy success partially mediated age-related differences on a word

recognition associative test.

Together, these findings show that age differences in metacognitive beliefs and use of effec-

tive strategies exist but they do not always predict memory performance outcomes. One reason

why some studies have failed to show age-related differences in metacognitive measures and,

sometimes, in performance (e.g., [45]) is that individual differences exist but might get obfus-

cated by averaging scores across age groups. For example, within older adult participants,

Naveh-Benjamin, Maddox, Jones, Old, and Kilb [46] found that older males but not older

females had poorer recognition memory for word pairs, suggesting age-related gender differ-

ences in associative memory. Similarly, Amrhein, Bond, and Hamilton [47] found differences

within older participants and between older and younger adults in proportion recalled and

item-pair clustering of semantic categories (e.g., recalling “dog-cat” and “table-chair” instead

of “table-dog” and “cat-chair”) on a free recall task. Specifically, these differences existed

between older adults with higher or lower levels of locus of control (LOC; [48]). Interestingly,

LOC differences did not moderate younger adults’ recall performance. Thus, individual differ-

ences among older adults may need further scrutiny in tests of the associative deficit.

The present study explored effects of aging on metacognition and memory by collecting

data on seven metacognitive measures (self-efficacy, postdictions, strategy success, effort,

fatigue, difficulty, and stamina) in conjunction with forced-choice yes/no associative and item

recognition. First, a planned univariate analysis of the data was conducted on recognition per-

formance to test the associative deficit hypothesis (e.g., [4, 23, 49–52]). Few studies have exam-

ined metacognitive processing on item-associative recognition tasks and those that have

generally focused on a single metacognitive variable (e.g., JOLs, strategy). Second, to examine

patterns in the multivariate data that were related to age differences, a simple artificial neural

network was trained to categorize individuals as younger adults or older adults using all

dependent variables in the dataset. Unlike many traditional analyses that either require a priori
groupings of individuals into conditions or collapse across all individuals, multivariate
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analyses such as artificial neural networks can cluster individuals into groups based on com-

mon features that might otherwise go undetected [53]. Here, we explore individual differences

in metacognitive memory processes in two age groups, grounded in a data-driven method.

Methods

Participants

The University of Richmond IRB approved this research study (for more information, contact

Jane Berry—Cognitive Aging Laboratory jberry@richmond.edu). Written informed consent

forms were provided and signed by all participants. This experiment utilized a mixed design

with Age (Young, Old) and Stimulus Type (Words, Names, Nonwords) as between-subjects

factors and Test Type (Item, Associate) as a within-subjects factor. One-hundred and twenty-

one participants participated in the study. Fifteen participants (11 older and 4 younger adults)

were dropped for not completing all questionnaires. The remaining 106 participants included

49 older adults (30 female) aged 60–82 (M = 69.91 years, SD = 5.66) and 57 younger adults (35

female) aged 18–22 (M = 18.98 years, SD = 0.99). Older adults were recruited from the com-

munity through newspaper and campus advertisement. Older adults received $20 for partici-

pation. Younger adults were students recruited from introductory psychology classes or via

campus announcements. Students received either participation credit or $20 for participation.

Demographic data and standardized scores on processing speed (measured by the Digit Sym-

bol Substitution Test [54]) and vocabulary (measured by Ekstrom, French, Harman, and Der-

men [55] Synonyms Test) for the 106 participants included in analyses are reported in Table 1.

Materials

The experimental stimuli were words (common nouns), names (proper first names), and non-

words. Names were selected from a Richmond area phone book. Names had 1–3 syllables and

a mean length of 5.30 letters (range = 3–11, SD = 1.39). Words and non-words were selected

from the English Lexicon Project database [56]. Words had a mean length of 6.46 letters

(range = 4–10, SD = 1.14), 1–2 syllables, and were of medium- to high-frequency in the lan-

guage achieving an average log-transformed HAL frequency of 8.68 [56, 57]. Nonwords were

chosen for specific characteristics: None of them had orthographic neighbors. They were all

between 6 and 9 letters in length (M = 8.21, SD = .87). They all had a high probability of being

correctly identified as a nonword in a lexical decision task (M = .96, SD = .03, range = .90–

1.00). Also, to ensure the nonwords were not too different from normal words they were

selected to have a long reaction time when being judged as nonwords (M = 883.11 ms,

Table 1. Means and standard deviations for demographic comparisons between age groups.

Variable Younger Adults

(N = 57)

Older Adults

(N = 49)

t-test p values

and Cohen’s d
Years of education 12.91 (0.96) 16.17 (2.36) p< .001, d = 1.96

Self-rated health 8.34 (1.56) 8.63 (1.33) ns
Self-rated vision 8.86 (1.31) 8.55 (1.28) ns
Self-rated hearing 8.86 (1.29) 7.31 (2.41) p< .001, d = 0.84

Speed of processing 70.33 (11.20) 48.76 (10.21) p< .001, d = 2.02

Vocabulary 22.07 (4.16) 29.06 (4.99) p< .001, d = 1.53

Note. Scales for self-rated health, vision, and hearing ranged from 0 (poor) to 10 (excellent). Two-tailed t-tests were

conducted between younger and older adults on each variable. Significant results are reported in the third column.

https://doi.org/10.1371/journal.pone.0220526.t001
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SD = 51.30 ms). Finally, the nonwords were selected to consist of two syllables with each sylla-

ble retaining its phonetic characteristics when the two syllables were reversed. Forty pairs of

names, words, and non-words were selected for study. Additional names, words, and non-

words were selected as practice stimuli. Target and lure lists were matched on mean length

and number of syllables (and HAL frequency for word stimuli). Male and female names were

paired in all possible combinations: female–female, male–male, male–female and female–

male. Names were paired to avoid possible pre-existing commonly known associations (e.g.,

“Angela-Brad” which might be easy to associate with Angelina Jolie and Brad Pitt). Words

were paired so as to avoid integrative [15] and common associations (e.g., “baby-diaper”). For

the experimental stimuli, the 60 pairs of names, 60 pairs of words, and 60 pairs of non-words

were separated into three lists of 30 pairs of names, 30 pairs of words, and 30 pairs of non-

words. Lists were matched on measures of length and frequency, within stimulus type.

Participants were assigned randomly to one of the three stimulus type conditions (words,

names, non-words). Order of test type (item or associative) was counterbalanced across partic-

ipants. Test order (item then associative, associative then item) was counterbalanced across

two blocks. The study phase, and item and associative recognition tests were presented on

slides in a group setting. Participants completed the Salthouse [58] pattern comparison task as

distractor task between the study and recognition test portions of the two blocks.

Two questionnaires were developed to measure memory self-efficacy (MSE) for item

(MSEQ-I) and associative (MSEQ-A) recognition test abilities [59]. The questionnaires asked

participants to judge their ability to recognize items and pairs of items. The general instruc-

tions on both questionnaires were “Circle YES if you believe you could do the task, and circle a

percent confidence rating for how sure you are that you could do the task. Circle NO if you

believe you cannot do the task (and do not circle a confidence rating).” The MSEQ-I is com-

prised of eight items of increasing levels of task difficulty ranging from lowest “If I studied 30

name-pairs for 5 seconds each, I could later identify 1 to 5 of the names correctly from a set of

40 items” to highest “If I studied 30 name-pairs for 5 seconds each, I could later identify 36 to

40 of the names correctly from a set of 40 items.” Participants made “Yes” or “No” responses at

each level, and for each “Yes” response they rated how confident they were that they would

achieve that level of performance by circling a confidence value from 10 to 100% (in 10%

increments).

The MSEQ-A instructions were virtually identical to those of the MSEQ-I but differed in

specific wording and number of items, reflecting the inherent structural differences between

the item and associative recognition memory tests. Specifically, there were half the number of

items on the MSEQ-A than on the MSEQ-I because the associative test is comprised of 20

pairs (of 40 items) and the item test is comprised of 40 items. As on the MSEQ-I, items on the

MSEQ-A increased in difficulty, ranging from lowest “If I studied 30 word-pairs for 5 seconds

each, I could later identify 1 to 5 of the pairs correctly from a set of 20 word-pairs” to highest

“If I studied 30 word-pairs for 5 seconds each, I could later identify 16 to 20 of the words cor-

rectly from a set of 20 word-pairs.” Participants responded “Yes” or “No” at each level and for

each “Yes” response also rated how confident they were that they would achieve that level of

performance by circling a confidence value from 10 to 100% (in 10% increments). MSE scores

were calculated by averaging confidence ratings across all levels (with “No” responses scored

as zero), resulting in two summary scores, one each for MSEQ-I and MSEQ-A.

A questionnaire was developed to assess participants’ post-test perceptions of perceived

task success, strategy use, task difficulty, effort expenditure, fatigue (“tiring”), and stamina

(“keeping up with the task”) levels (see S1 Questionnaire). First, participants in each condition

(words, names, nonwords) were asked to rate how much they had remembered on the item

test and on the associate test. This is henceforth referred to as participants’ postdictions of
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their memory performance. Participants rated their memory for each test type by making a

mark on a line ranging from 0% to 100% where 0% meant “not remembering anything” and

100% meant “remembering everything.” These marks were then transformed to percentages

for the postdiction measure. Second, participants were asked if they had used any “tricks” or

strategies to help learn the words and the pairings for the names, words, and non-words.

These strategies were not coded for analysis but rather were used to prompt participants subse-

quently for their perceptions of how successfully they had used the strategies during the recog-

nition tasks. Specifically, participants were asked, “What proportion of the time do you

estimate that you successfully used the above strategies?” Participants rated perceived strategy

success on a scale from 0% (“my strategies were not successful”) to 100% (“my strategies were

always successful”). These estimates were recorded for each task and were used in analyses as a

measure of perceived strategy success. Additionally, participants rated the amount of task diffi-

culty, task effort, fatigue, and how easy it was to “keep up” for each task (“stamina”) on scales

ranging from 1 (not at all) to 5 (very much).

Procedure

Participants were tested in group sessions ranging from 2–10 participants per session. When

they arrived for their session, they received a packet of materials, including consent form and

testing materials, and were seated in classrooms at individual desks. The study was introduced

to participants, and informed consent was obtained and demographic data were collected. The

experiment was conducted using Powerpoint software. Instructions and tests were presented

on a screen at the front of the room on a projector. The experimenter read aloud instructions

projected on-screen regarding the item and associative tests. Participants then completed two

short practice blocks. In the practice study phase, six pairs of items were presented one at a

time for study. Participants were instructed to try to memorize the items and pairs for the

upcoming tests. Each pair was presented on the screen for 5 seconds. A fixation point (+)

appeared during a 1-sec interstimulus interval. After the practice study phase, participants

completed sample items from the pattern comparison task [58] as a distractor task. Partici-

pants then completed practice item and associative recognition tests. In the practice item rec-

ognition tests, participants were presented with eight single names, words, or non-words. Half

the items had been studied and half were new items that had not been studied. Participants

recorded their recognition responses on numbered answer sheets. They were instructed to cir-

cle “yes” if they recognized the item as one which had been studied and “no” if they did not. In

the practice associative recognition tests, participants were presented with four pairs of words,

names, or non-words. Half of these pairs were presented intact (i.e., the original pairings from

the study phase) and half were presented in recombined pairs. In the recombined pairs, both

items in the pair had been presented in the study phase but had been paired with different

items. The task in the associative test was to circle “yes” if the pair was an intact pair from the

study phase and “no” if the pair was a recombined pair. The order of practice tasks (item/asso-

ciate) was counterbalanced across participants.

After the practice trials, participants completed the MSEQ-I and MSEQ-A to assess mem-

ory self-efficacy for the recognition tasks before they began the experimental blocks. Half the

participants completed the MSEQ-I first and half completed the MSEQ-A first. Next, for the

study phase, 30 stimulus pairs were presented on a projector at the rate of 5 sec per pair with a

1-sec interstimulus interval during which a fixation cross was shown. After study, participants

completed the pattern comparison distractor task and were given 20 seconds to match as

many patterns as possible. Participants then completed the item and associative recognition

tests (order counterbalanced). The procedures for the item and associative tests were identical
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to those in the practice blocks. In the item tests, 40 items (words, names, or non-words) were

presented, 20 of which were previously studied and 20 of which were new. In the associative

tests, 20 name-pairs, word-pairs, or non-word-pairs were presented; 10 of the pairs were intact

and 10 of the pairs were recombined.

Results

Testing the associative deficit hypothesis

Recognition memory scores (hit rate minus false alarm rate) were entered into a mixed analy-

sis of variance (ANOVA) with Age (young, old) and Stimulus Type (words, names, nonwords)

as between-participants factors and Test Type (item, associate) as a within-participants factor.

The main effect of Stimulus Type was significant, F (2,100) = 26.90, p< .001, np2 = .35, with

average recognition performance highest for words (M= 0.69, SD = 0.23), intermediate for

names (M = 0.43, SD = 0.24), and lowest for nonwords (M = 0.33, SD = 0.18) (see Fig 1). Post-

hoc analyses revealed a significant difference between recognition for words and names, t(142)

= 5.69, p< .001, Cohen’s d = 0.949 words and nonwords, t(138) = 8.39, p< .001, Cohen’s

d = 1.422 and a marginal difference between recognition for names and nonwords, t(138) =

2.24, p = .027, Cohen’s d = 0.379. These post-hoc comparisons were interpreted with Bonfer-

roni corrections (for 3 tests; p< .0167). Cohen’s d does not correct for multiple comparisons.

For all ANOVA results, post-hoc comparisons, as well as analyses with hit rates and false

alarm rates, see S1 Appendix.

No other main effects and interaction effects were significant. Notably, older and younger

adults had similar recognition memory scores overall (50% for younger adults and 47% for

older adults). Further, the lack of a significant main effect for Test Type provides no support

for an associative deficit, and the nonsignificant Age by Test Type interaction effect is incon-

sistent with the associative deficit hypothesis [4]. However, in a supplemental analysis, false

alarm rate was significantly greater for the associative task than item task, overall. No signifi-

cant effects of age on false alarm rate or hit rate were found (see S1 Appendix). Possible expla-

nations for the recognition results include procedural differences compared to other studies of

the associative deficit. These issues are examined further in the Discussion.

Age-related differences in metacognition

In order to provide statistical comparisons between older and younger adults’ metacognitive

data, we conducted two-tailed t-tests between younger and older adults on each of the eight

metacognitive variables for item and associative tests. Table 2 shows average recognition per-

formance scores and rating scores on the metacognitive variables by Test Type and Age with

the results of the age comparisons for each Test Type.

The only statistically significant difference in age was for fatigue on the item test, t(104) =

4.207, Bonferroni-corrected p< .001, uncorrected Cohen’s d = 0.820. Younger adults reported

significantly more fatigue (M= 2.79, SD = 1.13) than older adults (M = 1.88, SD = 1.09) on the

item test. However, no other significant age differences for performance or metacognition

were found using univariate statistics. These results motivated us to conduct exploratory mul-

tivariate analyses using neural networks. The data for variables summarized in Table 2 were

subjected to neural network analyses, reported below.

Individual differences in older adults’ metacognition

We performed an exploratory analysis of individual differences with artificial neural networks

trained to categorize individuals as young or old using the entire variable space (i.e.,

Individual differences in metamemory
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Fig 1. Recognition performance (hit rate minus false alarm rate) by age, stimulus type, and test type.

https://doi.org/10.1371/journal.pone.0220526.g001

Table 2. Performance and metacognition means and standard deviations by age and test type.

Variable Younger Adults

(N = 57)

Older Adults

(N = 49)

t-test p bonf values

and Cohen’s d

Item Associate Item Associate Item

YA vs. OA

Associate

YA vs. OA

Performance (HR—FAR) 0.54 (0.29) 0.46 (0.37) 0.48 (0.25) 0.47 (0.30) p = 1 p = 1

MSEQ (1–100) 49.50 (18.45) 59.69 (18.46) 38.49 (23.11) 48.37 (22.94) p = .136 p = .105

Postdictions (1–100) 58.26 (19.08) 57.28 (25.87) 57.12 (21.69) 51.12 (23.53) p = 1 p = 1

Postdiction Accuracy -0.19 (0.17) -0.16 (0.19) -0.17 (0.17) -0.22 (0.21) p = 1 p = 1

Strategy (1–100) 56.14 (23.60) 57.32 (25.90) 46.18 (25.59) 41.57 (27.63) p = .715 p = .056

Difficulty (1–5) 3.53 (1.00) 3.51 (1.10) 3.69 (1.10) 4.04 (1.14) p = 1 p = .294

Effort (1–5) 3.68 (0.74) 3.86 (0.79) 4.02 (0.97) 4.18 (0.88) p = .812 p = .874

Fatigue (1–5) 2.79 (1.13) 2.75 (1.14) 1.88 (1.09) 2.06 (1.21) p < .001, d = .82 p = .055

Stamina (1–5) 1.33 (0.61) 1.33 (0.61) 1.22 (0.55) 1.39 (0.84) p = 1 p = 1

Note. Standard deviation values are shown in parentheses. Two-tailed t-tests were conducted between younger and older adults on each variable for item and associative

tests separately. Results with Bonferroni corrections (for 18 tests; p< .0028) are reported in the fifth and sixth column. Cohen’s d does not correct for multiple

comparisons.

MSEQ indicates average ratings from the Memory Self-Efficacy Questionnaire.

Postdiction Accuracy = Postdiction Rating minus Percentage Correct. Zero indicates a perfect match between postdictions and performance accuracy. A negative value

indicates underestimation and a positive value indicates overestimation of performance.

https://doi.org/10.1371/journal.pone.0220526.t002
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recognition scores, postdictions, strategies, etc.). Our reasoning behind this approach was that

if the network was able to adequately categorize participants as young or old using the data as

input, probing the network’s internal structure would show useful information about the dif-

ferences in memory and metacognition used to make this categorization between young and

old. That is, the network would reveal multivariate patterns distinguishing younger adults

from older adults.

Artificial neural networks are powerful tools for discriminating between individuals (e.g.,

for review, see [53, 60–63] and have been used in other fields for this purpose. For example,

Wisniewski et al. [63] found that artificial neural networks revealed individual differences in

learning/memory strategies that predicted later performance on a perceptual memory task.

Cohen [64] trained an artificial neural network to discriminate between children with autism

and children with mental retardation, based on information obtained during interviews with

caregivers. Recently, researchers have begun using artificial neural networks to study the

effects of treatment in children with autism as an alternative to observational methods, which

have been shown to have poor internal validity [65]. Thus, we sought to apply the power of

neural network analyses to examine patterns of metacognitive processing differences in youn-

ger and older adults within the context of the associative memory deficit.

All artificial neural network procedures were conducted in Matlab R2015b using the neural

network toolbox for Matlab and custom scripts and functions. A depiction of the employed

neural network model is given in Fig 2. The experimental dependent variables were first Z-

score normalized. These Z-scores were used as input activations for 18 units in the input layer.

The input layer was fully connected via weighted connections to 2 hidden layer units, and then

to a single output unit. All units employed logistic activation functions, squashing the sum of

weighted input plus a bias parameter, to values between -1 and 1. As is typical with such a neu-

ral network architecture, when an input (here, data corresponding to a single individual) was

presented to the network, that input led to activation in the 2 hidden units based on those

units’ weighted connections to the input layer and their biases. Hidden unit activation then led

to activation in the single output unit based on the output unit’s weighted connections to the

hidden units and the output unit’s bias.

Weights and biases in the network were initially set to random values between -.005 and

.005. A target output activation was associated with each individual such that it was equal to -1

for younger adults and +1 for older adults. A network with adequate weights and biases would

therefore be able to produce an activation near +1 in the output unit when presented with an

older participant’s data and an activation of -1 when presented with a younger participant’s

data. However, before any training, networks were expected to have less than adequate weights

and biases to make such a classification. Through training from iterations of error-correction,

the weights and biases were gradually adapted to make the classification (for a review, see

[53]). See S2 Appendix for more details on the parameters and learning rules for the employed

artificial neural network. A supplementary analysis was conducted to test whether results

obtained with the employed neural network were replicable and robust to changes in network

architecture. The trends reported in this paper were replicated in 20 additional runs of retrain-

ing the model and with a model containing 3 hidden units. See S3 Appendix for figures that

report this analysis.

The trained network was able to accurately categorize virtually the entire sample. Of the

106 participants, approximately 98% were categorized correctly (i.e., positive values for older

adult, negative values for younger adult). One older adult was mistakenly categorized as young

and one young adult was mistakenly categorized as old. We further tested network accuracy

with a leave-one-out cross validation procedure. This let us quantify the degree to which a

trained network of the selected architecture could classify individuals it had not been trained

Individual differences in metamemory
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to classify. For 106 runs, one individual was left out of the inputs used for training, then tested

after training. The signal detection parameter d’ was 1.17 for classification of untrained indi-

viduals. This level of accuracy allowed us to probe the internal structure of the network trained

on all individuals to determine how it was able to perform the young adult versus older adult

classification.

Fig 3 shows activations within the hidden unit layer to each individual’s input data with

hidden unit 1 activation on the x-axis and hidden unit 2 activation on the y-axis. Filled mark-

ers in the figure represent young adults and open markers represent older adults. The dashed

line represents the decision boundary of the single output unit of the network. The network

grouped most younger adults in the lower right corner of this space (high activation of hidden

unit 1 and low activation of hidden unit 2). Appropriately, the decision boundary of the output

unit (dashed line) separated this part of hidden unit space from the rest, allowing low output

activation to younger adults, but high output activation to older adults. Of note, and unlike

younger adults, the older adults appeared to group into 2 different areas of the hidden unit

space. One group of older adults showed high activation in both hidden units (upper right cor-

ner), whereas the other showed low activation in both hidden units (lower left corner). It thus

appears that the network was able to successfully categorize younger adults and older adults by

forming two distinct groupings of older adults and one grouping of younger adults.

An automated k-means procedure was used to blindly group individuals into 3 different

clusters based on the hidden unit activations shown in Fig 3 (for review, see [53]). Determined

cluster assignments (Cluster 1, Cluster 2, or Cluster 3) are represented in Fig 3 by the shape of

markers. Cluster 1 (circles) contained 56 younger adults and 1 older adult in the lower right

portion of the hidden unit space. Cluster 2 (squares) contained 1 younger adult and 12 older

adults portioned out towards the lower left portion of the hidden unit space. Cluster 3 (trian-

gles) contained 0 younger adults and 36 older adults located mostly in the upper right portion

Fig 2. Architecture of the model employed. Recognition performance and the seven metacognitive variables were Z-

score normalized and these scores were used as input activations in the input layer of the model. The hidden layer

contained two units, and the output layer was made up of a single output unit. The network was trained to respond

with an activation of 1 in the output unit when presented with an older adult’s data and -1 if presented with a younger

adult’s data.

https://doi.org/10.1371/journal.pone.0220526.g002
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of hidden unit space. In general, this blind clustering aligned with our visual interpretation of

the data (i.e., distinct groups of older adults identified by network hidden units).

To determine what features of the data related to these three different clusters, we looked at

the means of the inputs within each cluster (Fig 4). In the figure, values above zero reflect a

higher than average score on the associated dependent variables. Values lower than 0 reflect a

lower than average score on the dependent variables. Many dependent variables showed little

if any difference between the three clusters. For instance, item and associate accuracy were

similar across clusters. This is consistent with the recognition performance ANOVA results

(see Fig 2). Other dependent variables appeared to show large differences between clusters. To

Fig 3. Activations within the hidden layer to each individual’s input data. The dashed line shows the decision

boundary of the output unit. Filled markers represent younger adults (YA). Open markers represent older adults (OA).

Marker shape (circle, square, or triangle) indicates cluster assignment as determined by k-means.

https://doi.org/10.1371/journal.pone.0220526.g003

Fig 4. Mean normalized scores on each variable used as input for the network. Error bars show standard errors of

the mean. Asterisks mark inputs showing significant differences between clusters (Bonferroni corrected). Partial eta

squared effect sizes for significant effects in the neural network clusters are (left to right): .88, .91, .92, .95, .93, .90, .91,

.96, .88.

https://doi.org/10.1371/journal.pone.0220526.g004
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narrow down which features were most important for the network to form these clusters, one-

way independent measures ANOVAs comparing the 3 different clusters were run on each of

the dependent variables. These ANOVAs were interpreted with Bonferroni corrections (for 18

tests). Asterisks in the figure mark dependent variables showing significance (p< .0028).

Several dependent variables showed significant differences between clusters. Both item and

associate postdictions showed high scores for Cluster 2 compared to Cluster 1 and Cluster 3,

with Cluster 3 showing the lowest scores out of the 3. Cluster 2, which was made up of mostly

older adults, showed relatively high ratings of their memory performance. In contrast, Cluster

3 older adults gave relatively low ratings of memory performance. A similar pattern was

observable for item and associate strategies. That is, Cluster 2 participants reported higher per-

ceived strategy-use success, Cluster 1 reported less perceived strategy-use success, and Cluster

3 reported least strategy-use success. On ratings of associate difficulty, Cluster 3 older adults

gave relatively high ratings of difficulty, whereas Cluster 2 and Cluster 1 reported less per-

ceived difficulty. For fatigue on the item task, younger adults (Cluster 1) gave relatively high

ratings compared to the two clusters of older adults, consistent with results from inferential

statistics between young and old (Table 2). For self-efficacy on the associate task, Cluster 1

younger adults and Cluster 2 older adults showed relatively high self-efficacy relative to Cluster

3 older adults, who showed lower self-efficacy. Finally, for both item and associate postdiction

accuracy, Cluster 2 older adults showed highest postdiction accuracy compared to the younger

adults making up most of Cluster 1 and the older adults making up all of Cluster 3.

The differences between clusters on the dependent variables reveal two important aspects

of the data that distinguish clusters. First, differences exist strongly in the metacognitive mea-

sures, but not in the performance measures (i.e., recognition). Second, the two separate clus-

ters made up of mostly older adults (Cluster 2 and Cluster 3) appear to represent opposite

patterns in the data. Generally, Cluster 2 is a group of older individuals who find the tasks rela-

tively easy, they believe they perform well, and these beliefs are accurate. In contrast, Cluster 3

older individuals show the opposite trend. They find the tasks difficult, they believe they are

performing relatively poorly, and these beliefs do not map accurately to their own perfor-

mance. Cluster 1 individuals, made up mostly of younger adults, fall somewhere in between

Cluster 2 and Cluster 3, with the exception of ratings of fatigue (cf. ANOVA results above).

An unexpected, but interesting component of the patterns that distinguished clusters, was

that there were dependent variables from the associative task that distinguished clusters,

whereas the corresponding dependent variables from the item task were not as informative.

For instance, both associative difficulty ratings and associative self-efficacy were informative,

especially for differences between the two clusters made up of mostly older adults (Cluster 2

and Cluster 3). Similar to Berry et al. [2], the metacognitive measures of associative memory

reveal greater between age group differences than the item measures. To explore this possibil-

ity a separate set of network simulations was conducted. Instead of training on the entire set of

dependent variables, new networks were trained with either dependent variables correspond-

ing to the item or dependent variables corresponding to the associative task. A leave-one-out

cross-validation procedure ([66, 67]; for review, see [68]) was used to test how well networks

were able to categorize younger adults and older adults using either inputs corresponding to

the item or associative task. In this procedure, a network was initialized and trained using the

methods described above. However, instead of being trained with data from each individual, a

network was trained with every individual except for one. This procedure was repeated 106

times so as to train a network while leaving out each individual in the dataset. Networks were

then tested for whether or not they were able to correctly classify the left out individual as a

younger adult or older adult. The signal detection measure d’ was used as the measure of per-

formance. Networks trained with data corresponding to the item task had a d’ = 0.77.
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Networks trained with data corresponding to the associative task had a d’ of 1.43. Thus, data

from the associative task were more useful for making the younger versus older categorization

than data from the item task.

Discussion

Neural network modeling supported a dissociation of younger from older adults using meta-

cognitive and memory measures. Artificial neural network analyses discovered two distinct

groups of older adults. Specifically, high-performing older adults (Cluster 2) appear to possess

distinct, metacognitive qualities as measured by perceived strategy success, postdictions, and

postdiction accuracy, that are not shared by other older adults (Cluster 3) and younger adults

(Cluster 1). These results highlight the importance of considering individual differences in

tests of associative memory deficits, especially within older adults. Most studies collapse across

older adults, treating them as one group. Using artificial neural networks, the present study

discovered two discrete groups of older adults who monitored their performance in different

ways and levels of accuracy. This is a novel finding in the memory and metacognitive aging lit-

erature and has implications for the associative deficit hypothesis.

Initially, this study tested the associative deficit hypothesis [4] using three stimulus condi-

tions: words, names, nonwords. We expected to find an age-specific associative deficit for

words but not for names and nonwords. None was found in any stimulus condition. In fact,

older and younger adults performed comparably across all stimulus conditions. Previous work

also failed to find an age-specific associative deficit using non-words [1] and names [2]. How-

ever, the lack of support for an associative deficit using word stimuli is inconsistent with much

of the literature (e.g., [2, 4, 49, 50, 29–31]). There are several possible explanations for the

absence of the associative deficit in the present study, which will be discussed later.

The primary goal of this study was to examine age and individual differences in memory

and metacognition. In addition to recognition performance, we collected seven metacognitive

measures: difficulty, perceived strategy success, self-efficacy, fatigue, effort, stamina, and post-

dictions. We then also calculated an eighth metacognitive variable, postdiction accuracy, by

subtracting each participant’s percentage correct by her or his postdiction rating (How much
did you remember in this study?) in item and associative tasks. We entered these data, along

with individual’s recognition performance, into an artificial neural network that was trained to

differentiate between older and younger adults. Using two sets (item and associative) of nine

dependent variables, three distinct groups (clusters) of participants were found.

Cluster 1 comprised all but one young adult in the study. Cluster 2 was made up of twelve

older adults and one young adult. The remaining older adults belonged to Cluster 3. All three

groups performed about the same on item and associate tests. What made them different were

their metacognitive ratings. The variables that were significantly different between groups

were: postdictions, perceived strategy success, difficulty (associate only), fatigue (item only),

self-efficacy (associate only), and postdiction accuracy (see Fig 4).

A crucial finding was that Cluster 2 and Cluster 3, both of which contained mostly older

adults, looked very different on these measures. Cluster 2 found the tasks relatively easy, they

believed they performed well (high postdictions), and these beliefs were accurate (high post-

diction accuracy). In contrast, Cluster 3 individuals found the tasks to be difficult, they

believed they were performing relatively poorly (low postdictions), yet these beliefs did not

map accurately onto their own performance (low postdiction accuracy). Cluster 1 individuals,

made up mostly of young adults, fell somewhere in between Cluster 2 and Cluster 3, with the

exception of ratings of fatigue. Interestingly, Cluster 2 had both high postdiction accuracy and

high perceived strategy success while the remaining older adults (Cluster 3) had low
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postdiction accuracy and low perceived strategy success. That is, older adults who are better at

judging their overall performance accuracy are also more confident in their strategy effective-

ness. This pattern supports Hertzog and Dunlosky’s [11] framework, which states performance

monitoring provides information that can be used to draw inferences about strategy effective-

ness ([11], p. 222). Research exploring this relationship between strategy use and metacogni-

tion in older adults is growing (e.g., [33, 69–72]).

Next, we asked which set of task measures (item or associate) was better at discriminating

between three clusters of participants. Instead of training on the entire set of dependent vari-

ables, new networks were trained with either dependent variables corresponding to the item

task or dependent variables corresponding to the associative task. We found that networks

trained with data corresponding to the associative task had a d’ that was 0.66 greater than net-

works trained with data corresponding to the item task. Thus, data from the associative task

were more useful for discriminating younger vs. older adults than data from the item task.

This finding is consistent with much of the associative deficit literature. While older and youn-

ger adults typically perform about the same on the item test, performance on the associative

test is what distinguishes younger and older participants (e.g., [4]). Although we did not find

this difference between younger and older adults in associative performance, neural network

modeling found differences between younger and older adults in associative metacognition.

That is, while associative memory looked the same for older and younger participants, patterns

of metacognitive ratings for the associative task looked different. This result highlights the

importance of evaluating metacognition in associative memory paradigms. It would be inter-

esting to test whether similar differences based on metacognitive data are revealed in previous

and future associative memory studies, including those using cued- and free-recall test para-

digms, each of which tend to require more self-initiated associative retrieval processes than

recognition test paradigms [73, 74]. Recently, McGillivray and Castel [33] found both younger

and older adults displayed equivalent metacognitive abilities in cued and free recall tasks that

incentivized memory performance with a point system.

Why did we fail to find an age-specific associative deficit? The age-specific associative defi-

cit has been partially attributed to older adults’ tendency to say they remember recombined

word pairs [2, 3, 75]. It is reasonable why this error is common. The associative task is espe-

cially challenging because any sense of familiarity to the studied word must be overcome in

order to correctly “reject” a recombined word pair. The associative task, therefore, relies on

recollective processes, such as explicit retrieval of mediators used during encoding. For exam-

ple, one might recollect a mental image of a wardrobe sinking to the bottom of the ocean for

wardrobe-ocean. Alternatively, one might retrieve the sentence they generated to include both

words in the word pair (e.g., “My wardrobe is filled with clothing to wear at the ocean”). Older

adults have a particularly hard time with this task, ultimately, producing more errors than

younger adults. One reason for this is because yes/no recognition tests place high demands on

self-initiated retrieval strategies [24]. Our failure to find an associative deficit may be the result

of task procedures and testing that could have provided support during retrieval in the follow-

ing ways.

First, participants were provided with information on the number of test trials for items

and associates during the instructions phase. That is, participants were told equal numbers of

intact and recombined pairs (as well as old and new items) would be presented at test. During

testing, participants made “yes/no” responses on a numbered response sheet that was com-

pleted by hand. So, as participants completed their response sheet, they may have kept track of

how many “yes” and “no” responses they have made in each task. This additional structure

may have led older adults in our study to respond more conservatively, by distributing their

“yes” responses during the associative task more equivalently across the two types of test pairs,
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thereby decreasing false alarm rates and enhancing overall memory accuracy in older adults.

In fact, in a supplemental analysis, we found no significant effect of age on false alarm rate (see

S1 Appendix). This explanation is consistent with Craik’s [76] argument that environmental

support at retrieval reduces older adults’ memory deficits (also, see [77]). In cued recall tasks,

for example, older adults’ performance is comparable to younger adults’ performance when

four letters (versus three letters) are given in the stem at retrieval, suggesting that younger and

older adults’ memory processes are more similar when increased support is provided at

retrieval [78].

Second, our study was also administered in a group setting, with approximately 5–6 partici-

pants at a time. Group testing might have provided social support that we did not expect, espe-

cially for older participants. While young adults are used to being tested during in-class exams

and quizzes (they are current college students), older adults may experience anxiety about

being tested on their memory. After all, many older adults have already noticed some memory

deficits in their everyday lives. For older adults, a group setting might have provided extra

social support from their peers. This could have reduced anxiety and allowed for increased

performance on the associative task, on which older adults normally struggle.

Finally, it should be noted that participants completed memory self-efficacy questionnaires

prior to the study and memory test phases, which may have inadvertently created a negative

priming context for older adults. Research on stereotype threat shows that older adults who

are primed with negative information about memory and aging prior to a memory test per-

form more poorly than younger adults on the memory test [79], and more poorly that older

adults who receive neutral or positive primes [80]. Yet, in our study, performance on the item

and associate memory tests did not differ significantly between the older and younger adults.

These results render unlikely the possible operation of stereotype threat in our study but future

research might want to systematically assess the impact of self-efficacy ratings collected prior

to versus after the item and memory tests in the associative deficit paradigm.

An important outcome from this failure to produce the age-specific associative deficit was

the exploration and discovery of individual differences in metacognition. Currently, the litera-

ture on metacognition and aging has produced mixed results. While some have suggested that

age-related associative deficits may be related to poor metacognitive monitoring (e.g., [14]),

others have suggested that metacognitive accuracy (how well one’s metacognitive judgments

track his or her performance accuracy) may not necessarily decrease with age (e.g., [39, 81–

85]). For example, while older adults have shown impaired memory performance compared to

younger adults, they still made accurate estimations about forgetting [83]. Additionally,

because memory recognition and the associative deficit vary by task type (e.g., [8, 24]) and

stimulus type [1, 2], it is not surprising that patterns in metacognitive responding vary between

studies. Our findings suggest that a subset of older adults (here, approximately 26% of older

adults) with high levels of performance and exceptional metacognitive monitoring skills might

influence overall trends in memory, metacognition, and aging results.

Inferential statistics comparing younger and older participants’ performance and eight

metacognitive measures on item and associative tasks yielded just one significant result: youn-

ger adults showed greater fatigue than older adults on the item test (Table 2). However, when

we entered these data into a neural network, we discovered important differences between a

subset of older adults that would have otherwise gone undetected. Perhaps, the most compel-

ling finding from this multivariate analysis was that data from the associative task were more

useful for neural networks to discriminate between younger and older adults than data from

the item task. This has important implications for the associative memory and metacognitive

aging literature. While older and younger adults did not vary on the associative recognition

memory test, their patterns of metacognitive ratings for the associative test were different.
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Only through use of a relatively novel statistical tool in aging research—artificial neural net-

work modeling—did we discover the importance of metacognitive measures in associative

memory. Our analysis differentiated between younger and older adults as well as identified

individual differences within this group of older adults. We encourage others to explore the

individual differences in their own data. Artificial neural network modeling is a useful data-

mining tool for this purpose.
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